2016-02-25 : The Japanese Tanpopo Project

The Tanpopo project will hopefully confirm the survival of bacteria in the near-Earth environment at the distance of the ISS orbit and thus verify earlier results of Cockell et al (1). More importantly, perhaps it will sample the environment outside the ISS for ambient or in-falling microbes that may be of extraterrestrial origin. In this latter respect it would significantly extend earlier attempts to detect and isolate microbes in the stratosphere at heights of 41km (2-5). The relevance of this work towards confirming the Hoyle-Wickramasinghe theory of life as a cosmic phenomenon cannot be overlooked (6).

1. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth
Charles S Cockell, Petra Rettberg, Elke Rabbow and Karen Olsson-Francis
The ISME Journal, 5, 1671–1682

2. The detection of living cells in stratospheric samples
M.J. Harris, N.C. Wickramasinghe, D.Lloyd, J.V. Narlikar, P. Rajaratnam, M.P. Turner, S. Al-Mufti, M.K. Wallis, and F. Hoyle
Proceedings of the SPIE Conference, 4495, 192 (2002)

3. Microorganisms cultured from stratospheric air samples obtained at 41 km M. Wainwright, N.C. Wickramasinghe, J.V. Narlikar and P. Rajaratnam FEMS Microbiology Letters, 218, 1, 161 (2003)

4. Did silicon aid in the establishment of the first bacterium?
M. Wainwright, K. Al-Wajeeh, N.C. Wickramasinghe and J.V. Narlikar International Journal of Astrobiology, 2, 3, 227 (2003)

5. Progress towards the vindication of panspermia
N.C. Wickramasinghe, M. Wainwright, J.V. Narlikar, P. Rajaratnam, M.H. Harris and D. Lloyd Astrophysics and Space Science, 283, 403 (2003)

6. Astronomical Origins of Life: Steps towards Panspermia
F. Hoyle and N.C. Wickramasinghe (Kluwer Academic Publishers, 2000)